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SUMMARY

Genetic screens are powerful tools for identifying
genes responsible for diverse phenotypes. Here we
describe a genome-wide CRISPR/Cas9-mediated
loss-of-function screen in tumor growth and metas-
tasis. We mutagenized a non-metastatic mouse can-
cer cell line using a genome-scale library with 67,405
single-guide RNAs (sgRNAs). The mutant cell pool
rapidly generates metastases when transplanted
into immunocompromised mice. Enriched sgRNAs
in lung metastases and late-stage primary tumors
were found to target a small set of genes, suggesting
that specific loss-of-function mutations drive tumor
growth and metastasis. Individual sgRNAs and a
small pool of 624 sgRNAs targeting the top-scoring
genes from the primary screen dramatically accel-
erate metastasis. In all of these experiments, the ef-
fect of mutations on primary tumor growth positively
correlates with the development of metastases. Our
study demonstrates Cas9-based screening as a
robust method to systematically assay gene pheno-
types in cancer evolution in vivo.

INTRODUCTION

Cancer genomes have complex landscapes of mutations and

diverse types of genetic aberrations (Lawrence et al., 2013;

Weinberg, 2007). A major challenge in understanding the cancer

genome is to disentangle alterations that are driving the pro-

cesses of tumor evolution from passenger mutations (Garraway

and Lander, 2013). Primary tumor growth and metastasis are

distinct yet linked processes in the progression of solid tumors

(Nguyen et al., 2009; Valastyan andWeinberg, 2011; Vanharanta

and Massagué, 2013). It has been observed in the clinic that the
probability of detecting metastases in a patient correlates posi-

tively with the size of a primary tumor (Heimann and Hellman,

1998). Several possible explanations have been suggested: met-

astatic properties may only be acquired in late-stage tumors,

larger tumors may seed proportionally more cells into circulation

that eventually migrate to other sites, or cells with a strong ability

to proliferate may also have enhanced ability to metastasize

(Weinberg, 2007). In early studies using random insertional

mutagenesis, it was observed that metastatic cell subpopula-

tions overgrow to complete dominance in the primary tumor,

suggesting progressive selection at both sites (Korczak et al.,

1988; Waghorne et al., 1988).

Genetic screens are powerful tools for assaying phenotypes

and identifying causal genes in various hallmarks of cancer pro-

gression (Hanahan andWeinberg, 2011). RNAi and overexpres-

sion of open reading frames (ORFs) have been utilized for

screening cancer genes in several models of oncogenesis in

mice (Schramek et al., 2014; Shao et al., 2014; Zender et al.,

2008). Recently, the Cas9 nuclease (Barrangou et al., 2007; Bo-

lotin et al., 2005; Chylinski et al., 2013, 2014; Deltcheva et al.,

2011; Garneau et al., 2010; Gasiunas et al., 2012; Jinek et al.,

2012; Sapranauskas et al., 2011) from the microbial type II

CRISPR (clustered regularly interspaced short palindromic re-

peats) system has been harnessed to facilitate loss-of-function

mutations in eukaryotic cells (Cong et al., 2013; Mali et al.,

2013). When the Cas9 nuclease is targeted to specific locations

in the genome, DNA cleavage results in double-stranded

breaks (DSBs), which are repaired via non-homologous end-

joining (NHEJ) (Rouet et al., 1994). NHEJ repair results in inser-

tion or deletion (indel) mutations that can cause loss of function

if the DSB occurs in a coding exon. The Cas9 nuclease can be

guided to its DNA target by a single-guide RNA (sgRNA) (Jinek

et al., 2012), a synthetic fusion between the CRISPR RNA

(crRNA) and trans-activating crRNA (tracrRNA) (Deltcheva

et al., 2011). In cells, Cas9-mediated gene disruption requires

the full-length tracrRNA (Cong et al., 2013; Mali et al., 2013),

in which secondary structures at the 30 end of tracrRNA are
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critical for Cas9-mediated genome modification (Cong et al.,

2013; Hsu et al., 2013).

Screens utilizing Cas9 have identified genes that are essential

for cell survival and genes involved in drug resistance in various

cell lines (Shalem et al., 2014; Wang et al., 2014; Koike-Yusa et

al., 2014; Zhou et al., 2014). In vivo pooled screens are chal-

lenging due to many factors, such as the complexity of the

library, limitations of virus delivery and/or cell transplantation,

uniformity of viral transduction at a low MOI, and the complex

dynamics and interactions of cells in animals. In this study, we

report a genome-wide Cas9 knockout screen in a mouse model

of tumor evolution. This screen provides a systematic pheno-

typic measurement of loss-of-function mutations in primary tu-

mor growth and metastasis.

RESULTS

CRISPR/Cas9 Library-Mediated Mutagenesis
Promotes Metastasis
We derived and cloned a cell line (Chen et al., 2014) from a

mouse non-small-cell lung cancer (NSCLC) (Kumar et al.,

2009). This cell line possesses an oncogenic Kras in conjunction

with homozygous p53 and heterozygous Dicer1 loss of function

(KrasG12D/+;p53�/�;Dicer1+/�, denoted KPD) and is capable of

inducing tumors when transplanted into immunocompromised

mice (Chen et al., 2014; Kumar et al., 2009). We transduced

this cell line with a lentivirus carrying a Cas9 transgene fused

to a GFP and generated clonal cell lines (Cas9-GFP KPD) (Exper-

imental Procedures) (Figures S1A and S1B). A clonal Cas9-GFP

KPD cell line (clone 5) was selected to provide genetic and

cellular homogeneity for subsequent screens.

We utilized a pooled genome-wide mouse sgRNA library

(termed mouse genome-scale CRISPR knockout library A, or

mGeCKOa) containing 67,405 sgRNAs targeting 20,611 pro-

tein-coding genes and 1,175 microRNA precursors in the mouse

genome (Sanjana et al., 2014). The library also contains 1,000

control sgRNAs (termed non-targeting sgRNAs) designed to

have minimal homology to sequences in the mouse genome

(Sanjana et al., 2014; Shalem et al., 2014). We transduced the

Cas9-GFP KPD cell line with the mGeCKOa library in three inde-

pendent infection replicate experiments; for each replicate, the

library representation (cells per lentiviral CRISPR construct)

was greater than 4003 (Figure 1A) (Experimental Procedures).

After in vitro culture for 1 week, we subcutaneously trans-

planted 3 3 107 cells into the flanks of immunocompromised

Nu/Nu mice (Figure 1A). We transplanted the cells from each

infection replicate into four mice, using one mouse for early

tumor sequencing and three mice for sequencing of late-stage

primary tumor and metastases (Figure 1A). Both mGeCKOa-

transduced and untransduced Cas9-GFP KPD cells formed tu-

mors at the injection site (Figure 1B). Like most subcutaneously

transplanted tumors, these tumors were poorly differentiated.

The primary tumors induced by mGeCKOa-transduced cells

grew slightly faster than tumors from the untransduced cells at

an early stage (Figure 1C) (2 weeks post-transplantation) (paired

two-tailed t test, p = 0.05), but at late stages all tumors were

similar in size (paired two-tailed t test, p = 0.18 for data at

4 weeks, p = 0.6 for data at 6 weeks) (Figure 1C).
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At 6 weeks post-transplantation, we imaged the mice using

micro-computed tomography (mCT) and found tumors in the

lungs of the mice transplanted with mGeCKOa-transduced

Cas9-GFPKPD cells (mGeCKOamice), but not in themice trans-

planted with untransduced Cas9-GFP KPD cells (control mice)

(Figure 1D, Figure S1C). Mice were sacrificed and examined

for metastases in various organs. Under a fluorescent stereo-

scope at 63 magnification, metastases were visually detected

in the lung in 89% (8/9) of the mGeCKOa mice (Figure S1D).

The mGeCKOa mice on average had 80% of their lung lobes

positive for metastases (Figure 1E). In contrast, none (0/3) of

the control mice developed detectable metastases in the lung

(Figure 1E). At this time, metastases were not detected in the

liver, kidney, or spleen in either group (Figure 1F). These data

indicated that mGeCKOa library transduction enhanced the abil-

ity of the Cas9-GFP KPD cells to form metastases in the lung.

Dynamic Evolution of sgRNA Library Representation
during Tumor Growth and Metastasis
To investigate the sgRNA representation through different stages

of tumor evolution and to identify genes where loss of function

confers a proliferative or metastatic phenotype, we used deep

sequencing to readout the sgRNA representation (see Data S1

in Dataset S1). At 6 weeks post transplantation, we sequenced

the late-stage primary tumor and three random lobes from the

lung of each of the ninemGeCKOamice (Figure 1A) (Experimental

Procedures). In parallel, we also sequenced the mGeCKOa input

plasmid library, the pre-transplantation mGeCKOa-transduced

Cas9-GFP KPD cells (cultured in vitro for 7 days after trans-

duction), and early-stage primary tumors (2 weeks post trans-

plantation, one mouse from each infection replicate). In the cell

samples, the sgRNA representations showed high concordance

between technical replicates (correlation, r = 0.95 on average,

n = 3) and biological infection replicates (correlation, r = 0.84

on average, n = 3) (Figures 2A, S2A, S2B, and S2E). The sgRNA

representation of cell samples correlates highly with the plasmid

representation (correlation, r = 0.93 on average, n = 3) (Figures

2A, S2C, and S2E). Furthermore, different sgRNAs that target

the same gene are correlated in terms of rank change (correlation,

r = 0.49 on average, n = 3) (Figure S2D). Using gene set enrich-

ment analysis (GSEA), we found that the sgRNAs with signifi-

cantly decreased abundance in cells compared to plasmid are

enriched for genes involved in fundamental cellular processes,

such as ribosomal proteins, translation factors, RNA splicing fac-

tors, andRNA processing factors, indicating selection against the

loss of these genes after 1 week in culture (Figure S2F).

To investigate the sgRNA library dynamics in different sample

types (plasmid, pre-transplantation cells, early primary tumor,

late primary tumor, and lung metastases), we compared the

overall distributions of sgRNAs from all samples sequenced.

Cell samples clustered tightly with each other and the plasmid,

forming a cell-plasmid clade (Figures 2A and S2E). Early primary

tumor samples also clustered with each other and then with the

cell-plasmid clade, whereas late tumors and lung metastases

clustered together in a distinct group (Figures 2A and S2E).

The overlap of detected sgRNAs between different pre-trans-

plantation infection replicates is over 95% (Figure S3A). The de-

tected sgRNAs in the three infection replicates of early tumor
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Figure 1. Tumor Growth and Metastasis in Transplanted Cas9-GFP KPD Cells with mGeCKOa Library
(A) Schematic representation of the loss-of-function metastasis screen using the mouse genome-scale CRISPR/Cas9 knockout library (mGeCKOa).

(B) Representative H&E stains of primary tumor from Nu/Numice subcutaneously transplanted with a Cas9-GFP KrasG12D/+;p53�/�;Dicer1+/� (KPD) NSCLC cell

line that was either untransduced or transduced with the mGeCKOa lentiviral library. Scale bar, 200 mm.

(C) Primary tumor growth curve ofNu/Numice transplanted with untransduced cells (n = 3mice) ormGeCKOa-transduced Cas9-GFPKPD cells (n = 9mice). Error

bars indicate SEM.

(D) MicroCT 3D reconstruction of the lungs of representative mice transplanted with control (untransduced) and mGeCKOa-transduced (mGeCKOa) cell pools.

Lung metastases were identified and traced in each 2D section (green).

(E) Percent of lobes with metastases visible after dissection under a fluorescence stereoscope in Nu/Nu mice transplanted with untransduced Cas9-GFP KPD

cells (n = 3 mice) or mGeCKOa-transduced Cas9-GFP KPD cells with three independent infection replicate experiments (1, 2, and 3; n = 3 mice per replicate).

Error bars indicate SEM.

(F) Representative H&E stains from various organs of Nu/Numice subcutaneously transplanted with untransduced and mGeCKOa-transduced Cas9-GFP KPD

cells. Yellow arrow indicates a lung metastasis. Scale bar, 40 mm.

See also Figure S1.
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samples overlap 63%–76% with each other (Figure S3B). Early

primary tumors retained less than half (32%–49%) of the sgRNAs

found in the transplanted cell populations (Figures 2B, 2C, S3C,

and S3D). Compared to the cell populations, sgRNAs whose

targets are genes involved in fundamental cellular processes

are further depleted in early tumors (Table S1).

Interestingly, only a small fraction of sgRNAs (less than 4% of

all sgRNAs, or less than 8% of sgRNAs in the early primary tumor

of the corresponding replicate) were detected in the late-stage

primary tumor samples (Figures 2B, 2C, S3C, and S3D). The

sgRNA diversity (i.e., number of different sgRNAs detected)

further decreased in samples from lung metastases (Figures
2B, 2C, S3C, and S3D). The lung samples retained %0.4% of

all sgRNAs in the mGeCKOa library, or%1.1% of sgRNAs found

in the early primary tumor of the corresponding replicate, with a

subset of highly enriched sgRNAs (Figures 2B, 2C, S3C, and

S3D). The global patterns of sgRNAdistributions in different sam-

ple types are distinct, as is evident in the strong shifts in the

respective cumulative distribution functions (Kolmogorov-Smir-

nov [KS] test, p < 10�15 for all pairwise comparisons) (Figure 2D).

Enriched sgRNAs in Primary Tumors
Late primary tumors retain few sgRNAs (on average 813 ± 264

sgRNAs, n = 9 mice), with even fewer at high frequencies
Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc. 3
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Figure 2. Representation of mGeCKOa Library at Different Stages of Tumor Growth and Metastasis

(A) Pearson correlation coefficient of the normalized sgRNA read counts from the mGeCKOa plasmid library, transduced cells before transplantation (day 7 after

spinfection), early primary tumors (�2 weeks after transplantation), late primary tumors (�6 weeks after transplantation), and lung metastases (�6 weeks after

transplantation). For each biological sample type, three independent infection replicates (R1, R2, and R3) are shown. n = 1 mouse per infection replicate for early

primary tumors; n = 3 mice per infection replicate for late primary tumors and lung samples.

(B) Number of unique sgRNAs in the plasmid, cells before transplantation, early and late primary tumors, and lung metastases as in (A). Error bars for late primary

tumors and lung metastases denote SEM for n = 3 mice per infection replicate.

(C) Boxplot of the sgRNA normalized read counts for the mGeCKOa plasmid pool, cells before transplantation, early and late primary tumors, and lung me-

tastases as in (A). Outliers are shown as colored dots for each respective sample. Gray dots overlaid on each boxplot indicate read counts for the 1,000 control

(non-targeting) sgRNAs in the mGeCKOa library. Distributions for late primary tumors and lung metastases are averaged across individual mice from the same

infection replication.

(D) Cumulative probability distribution of library sgRNAs in the plasmid, cells before transplantation, early and late primary tumors, and lung metastases as in (A).

Distributions for each sample type are averaged across individual mice and infection replications.

See also Figures S2 and S3.
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(4 ± 1 sgRNAs with >5% of total reads) in each mouse (Figures

2B, 2C, S2C, S2D, 3A, and S4H). We used three methods to

identify enriched sgRNAs in late primary tumors: (1) sgRNAs

above a certain threshold, (2) top-ranked sgRNAs in the tumor

of each mouse, and (3) using false discovery rate (FDR), i.e.,

sgRNAs enriched compared to the distribution of the 1,000

non-targeting sgRNAs. All three methods generated similar re-

sults (Figure S4A). Taking the results from (3) as an example, a

total of 935 sgRNAs (targeting 909 genes) are enriched over

the non-targeting controls (FDR cutoff = 0.2%) in the late primary
4 Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc.
tumor of one or more mice (Figures 3B and 3C). These sgRNAs

are targeting genes highly enriched in apoptosis pathways (Table

S2), with many of them being pro-apoptotic, such as BH3 inter-

acting-domain death agonist (Bid), phosphatase and tensin ho-

molog (Pten), cyclin-dependent kinase inhibitor 2a (Cdkn2a),

and O-6-methylguanine-DNA methyltransferase (Mgmt), sug-

gesting strong selection for mutations that inactivate apoptosis

in primary tumor cells.

We identified 24 candidate genes that were targeted by two or

more independent sgRNAs enriched in late primary tumors
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Figure 3. Enriched sgRNAs from the mGeCKOa Screen in Primary Tumors

(A) Pie charts of the most abundant sgRNAs in the primary tumors (at �6 weeks post-transplantation) of three representative mice (one from each replicate

mGeCKOa infection). The area for each sgRNA corresponds to the fraction of total reads from the primary tumor for the sgRNA. All sgRNAs with R2% of total

reads are plotted individually.

(B) Number of genes with 0, 1, 2, or 3 significantly enriched (FDR < 0.2% for at least onemouse) mGeCKOa sgRNAs targeting that gene. For genes/miRs with 2 or

more enriched sgRNAs, genes/miRs are categorized by howmany sgRNAs targeting that gene/miR are enriched as indicated in the colored bubbles adjacent to

each bar.

(C) Inset: waterfall plot of sgRNAs where multiple sgRNAs targeting the same gene are significantly enriched in primary tumors. Each sgRNA is ranked by the

percent of mice in which it is enriched. Only sgRNAs enriched in two or more mice are shown in the main panel. Main panel: enlargement and gene labels for

sgRNAs at the top of the list from the inset (boxed region).

See also Figures S3, S4, and S5.
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(Figures 3B and 3C). These genes were found to be mutated in

patients in many previously reported cancer sequencing studies

curated by cBioPortal (Cerami et al., 2012; Gao et al., 2013) (Fig-

ure S5A). For example, in somatic mutations identified by The

Cancer Genome Atlas (TCGA) for NSCLC, including adenocarci-

noma (LUAD) (Cancer Genome Atlas Research Network, 2014)

and lung squamous cell carcinoma (LUSC) (Cancer Genome

Atlas Research Network, 2012), 36% (107/407) of patients

have one or more of these 24 genes mutated (Figures S5B and

S5C). Several candidates were well-known tumor suppressors,
such as Pten, cyclin-dependent kinase inhibitor 2b (Cdkn2b),

neurofibromin 2 (Nf2/Merlin), alpha-type platelet-derived growth

factor receptor (Pdgfra), and integrin alpha X (Itgax).

Enriched sgRNAs in Metastases
Wealso sequenced the sgRNAdistributions from three lung lobes

for each mouse transplanted with mGeCKOa-transduced

Cas9-GFP KPD cells. In each lobe, the sgRNA representation is

dominated by one or a few sgRNAs (Figures 4A, S3D, and S4I).

In each mouse, the lung sgRNA representation (average of
Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc. 5
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Figure 4. Enriched sgRNAs from the mGeCKOa Screen in Lung Metastases
(A) Pie charts of the most abundant sgRNAs in three individual lobes of the lungs of two representative mice transplanted with mGeCKOa-transduced cells. The

area for each sgRNA corresponds to the fraction of total reads from the lobe for the sgRNA. All sgRNAs with R2% of total reads are plotted individually.

(B) Pie charts of the most abundant sgRNAs in the lung (averaged across three individual lobes) for the two mice shown in (A). All sgRNAs withR2% of average

reads are plotted individually.

(C) Left: percentage of late tumor reads for the significantly enriched (FDR < 0.2%) mGeCKOa sgRNAs found in the lung metastases (averaged across three

dissected lobes). Right: in purple, the percentage of late tumor reads for the significantly enriched (FDR < 0.2%) mGeCKOa sgRNAs found in the lungmetastases

(average across all mice, n = 9mice). In gray, the percentage of late tumor reads for random, size-matched samplings of sgRNAs present in the late tumor (n = 100

samplings). Error bars indicate SD.

(legend continued on next page)

6 Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc.
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normalized sgRNA representations from three lobes) is also domi-

nated by a small number of sgRNAs (on average, 3.4 ± 0.4

sgRNAs with >5% of total reads) (Figure 4B), suggesting that me-

tastases were seeded by a small set of cells, which grew to domi-

nance over this timescale. Non-targeting sgRNAswere occasion-

ally detected in the metastases but were never observed at high

frequency (<0.1% of total reads in any lobe; Figures 2C, 4A and

4B, and S4I). These observations are consistent with our finding

that untransduced tumors are notmetastatic (Figure 1E), suggest-

ing that specific sgRNA-mediated mutations led to metastasis.

The sgRNA representations in the lung metastases are similar

to those in the late-stage primary tumors in several ways. First,

the detected sgRNAs in lung samples overlap significantly with

those in late tumor samples (chi-square test, p < 10�15) (Fig-

ure S3E). Second, the number of sgRNAs detected in lung sam-

ples correlates, albeit weakly, with the number of sgRNAs

detected in late primary tumor samples (r = 0.42, F test, p =

0.097) (Figure S3F). Third, the abundance (number of reads) of

sgRNAs in the lung correlates positively with that in the late

primary tumors of the same mouse (correlation, r = 0.18 on

average, F test, p < 0.01, n = 9) (Figure S3G). Fourth, in most

mice (8/9), the lung metastasis enriched sgRNAs also occupy a

large fraction of reads in the late primary tumor of the same

mouse (Figure 4C, left panel), significantly larger than a random

sampling of the same number of sgRNAs from the mGeCKOa li-

brary (Figure 4C, right panel). These data indicate that mutants

with preferential ability to proliferate in late primary tumors are

more likely to dominate the metastases.

The three methods (threshold, rank, or FDR) of finding en-

riched sgRNAs in the lung metastases yield similar results (Fig-

ure S4B). Using the non-targeting sgRNA distribution to set a

FDR-based cutoff for enrichment, the enriched sgRNAs in

different lobes of the same mouse overlap with each other by

62% ± 5% (chi-square test, p < 10�15) (Figure S4C), while

different mice show greater variability while still overlapping

significantly (29% ± 3%, chi-square test, p < 10�15) (Figure S4D).

The overlap between sgRNAs in different biological/infection

replicate experiments when pooling enriched sgRNAs from all

mice in the same replicate is 54% (chi-square test, p < 10�15)

(Figure S4E), suggesting that pooling sgRNAs from mice in the

same experiment facilitates the identification of shared hits.

These data suggest that the three independent experiments

reproducibly captured a common set of hits and provide a pic-

ture for in vivo experimental variation between different lobes,

different animals, and different infection replicates.
(D) Inset: all sgRNAs found in individual lung lobes, ordered by the percent of lobes

sgRNAs for that lobe. Only sgRNAs enriched in two or more lobes are shown. Ma

inset (boxed region).

(E) Inset: all sgRNAs found in individual mice (averaged across three dissected lob

significantly enriched (FDR < 0.2%) sgRNAs for that mouse. Only sgRNAs enriche

sgRNAs at the top of the list from the inset (boxed region).

(F) Bottom:metastasis primary ratio (MPR) for the sgRNAs inmGeCKOawith enric

The sgRNAs are sorted by the number of mice in which the MPR for the sgRNA is

than 1. In both panels, individual sgRNAs are labeled by gene target.

(G) Number of genes with 0, 1, 2, or 3 significantly enriched (FDR < 0.2% for at l

enriched sgRNAs, gene names are indicated in the colored bubble adjacent to t

(H) Number of mice and percentage of mice in which each sgRNA was enriched

See also Figures S4 and S5.
We found 147 sgRNAs enriched in more than one lobe, and

105 sgRNAs enriched in the lung of more than one mouse (Fig-

ures 4D and 4E). These include sgRNAs targeting Nf2, Pten,

tripartite motif-containing protein 72 (Trim72), fibrinogen alpha

chain (Fga), Bid, cyclin-dependent kinase inhibitor 2a (Cdkn2a),

zinc finger FYVE domain-containing 28 (Zfyve28), reproductive

homeobox 13 (Rhox13), and BRISC and BRCA1 A complex

member 1 (Babam1), as well as microRNA genes miR-152 and

miR-345. Intriguingly, a few sgRNAs targeting the Pol II subunits

and olfactory receptor are also enriched in the lung, possibly due

to off-target effects or unknown roles of these genes. For most

sgRNAs detected in lung metastases, the relative abundance

in metastases is lower than that in the late primary tumor of the

same mouse, with a metastasis-primary ratio (MPR) less than 1

(Figure S4F), likely due to more skewed distributions of sgRNAs

in the metastases compared to those in the late primary tumors.

A small subset of sgRNAs, however, are more abundant in me-

tastases than in primary tumors (MPR > 1) in multiple mice,

e.g., sgRNAs targeting Nf2, Trim72, prostaglandin E synthase 2

(Ptges2), or ubiquitin-conjugating enzyme E2G 2 (Ube2g2)

(Figure 4F).

For four genes, Nf2, Pten, Trim72, and Zfyve28, two indepen-

dent sgRNAs targeting different regions of the same gene were

enriched in lung metastases (Figure 4G). One of the Zfyve28-tar-

geting sgRNAs, however, is enriched in only one mouse,

whereas Nf2, Pten, and Trim72 all have two sgRNAs enriched

in multiple mice (Figure 4H). These three genes, several repre-

sentative genes with one frequently enriched sgRNA (Cdkn2a,

Fga, and Cryba4), and the two top-scoring microRNAs (miR-

152 and miR-345) were chosen to assay individually for primary

tumor growth and metastases formation.

Validation In Vivo Using Individual sgRNAs
For these eight genes (Nf2, Pten, Trim72, Cdkn2a, Fga, Cryba4,

miR-152, and miR-345), we cloned multiple sgRNAs targeting

each of them into the lentiGuide-Puro vector and transduced

them into the Cas9-GFP KPD cell line (Figure 5A) (Experimental

Procedures). As expected, these sgRNAs generated a broad

distribution of NHEJ-mediated indels at the target site when

examined 3 days post-transduction, with a bias toward deletions

(Figure 5B). For protein-coding genes, the majority (>80%) of in-

dels are out of frame, which potentially disrupts the protein func-

tions. For miR-152 and miR-345, the sgRNAs generated mostly

deletions (>90% of indels are deletions, average indel size –7 bp)

(Figure 5B), overlapping with the loop or mature microRNA
in which a particular sgRNAwas among the significantly enriched (FDR < 0.2%)

in panel: enlargement and gene labels for sgRNAs at the top of the list from the

es), ordered by the percent of mice in which a particular sgRNAwas among the

d in two or more mice are shown. Main panel: enlargement and gene labels for

hment inmetastases over late tumors (MPR > 1) observed in at least threemice.

greater than 1. Top: number of mice in which the MPR for this sgRNA is greater

east one mouse) mGeCKOa sgRNAs in the lung metastases. For genes with 2

he bar.

in the lung metastases for all genes with multiple enriched sgRNAs.
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Figure 5. Validation of Target Genes and MicroRNAs from mGeCKOa Screen Using Individual sgRNAs

(A) Schematic representation of lentiviral transduction of Cas9-GFP KPD cells with single sgRNAs designed to target one gene or miR. After puromycin selection,

the cell population was transplanted into Nu/Numice and also deep sequenced to examine the distribution of indels at the target site. After 5 weeks, the primary

tumor and lungs were examined.

(B) Histograms of indel sizes at the genomic locus targeted by a representative sgRNA for each gene/miR after 3 days of puromycin selection. Indels from sgRNAs

targeting the same gene were pooled (6 sgRNAs for each protein-coding gene; 4 sgRNAs for each miR).

(C) Representative H&E staining of lung lobes from uninjected mice (n = 3 mice), mice transplanted with cells transduced with Cas9 only (n = 5), and mice

transplanted with cells containing Cas9 and a single sgRNA (n = 6). Single sgRNAs are either control/non-targeting sgRNAs (n = 6 mice for control sgRNAs, 3

distinct control sgRNAs with 2 mice each) or targeting sgRNAs (n = 6 mice for each gene/miR target, 3 sgRNAs per target with 2 mice each). Blue arrows indicate

lung metastases. Scale bar, 10 mm.

(D) Percent of lung lobes with metastases after 6 weeks for the mice in (C). Error bars indicate SEM.

(E) Primary tumor growth curve ofNu/Numice transplanted with NSCLC cells transduced with Cas9 only (n = 5) or single sgRNAs (n = 6mice per gene/miR target,

3 sgRNAs per target with 2 mice each; n = 6 mice for control sgRNAs, 3 control sgRNAs with 2 mice each). Error bars indicate SEM.

(F) Correlation between primary tumor volume and percent of lobes with metastases for each gene in (D) and (E). Error bars indicate SEM.

See also Figure S6.
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sequences in the hairpins, which are structures required for

maturation ofmicroRNAs. For proteins where specific antibodies

are available (Nf2 and Pten), we found that the majority of the

protein products were significantly reduced 1 week after lentivi-

ral sgRNA infection (Figure S6A).

When these single-sgRNA-transduced cells were trans-

planted into the flanks of immunocompromised mice, they all

formed tumors in situ. With two mice injected per sgRNA and

three sgRNAs per gene, all genes tested showed increased

lung metastasis formation compared to controls (untransduced

and non-targeting sgRNAs), with the most significant ones being

Nf2, Pten, and Cdkn2a (Fisher’s exact test, one-tailed, p < 10�3)

(Figures 5C and 5D). Fga and Trim72 also have effects on metas-

tasis acceleration (Fga p = 0.001, Trim72 p = 0.046). Cryba4 is

not statistically different from controls (p = 0.1). sgRNAs target-

ingmiR-345 ormiR-152 significantly increased the rate ofmetas-

tasis (miR-345 p = 0.01,miR-152 p = 0.046). These data suggest

that loss-of-function mutations in any of Nf2, Pten, Cdkn2a,

Trim72, Fga, miR345, or miR-152 are sufficient to accelerate

the rate of metastasis formation in this genetic background.

Most genes targeted by single sgRNAs also contributed to

accelerated primary tumor growth compared to controls (Fig-

ure 5E). Nf2 and Pten loss of function dramatically speed up tu-

mor growth (KS test, p < 0.001) (Figure 5E); Cdkn2a-, Trim72-,

and Fga-targeting sgRNAs slightly accelerate primary tumor

growth (KS test, p = 0.003–0.01); Cryba4 has a marginal effect

(KS test, p = 0.08); and neither miR-152- nor miR-345-targeting

sgRNAs promote primary tumor growth (KS test, p > 0.1). Over-

all, for the targets we examined using individual sgRNAs, the

number of lobes with lung metastases strongly correlates with

the terminal volume of the late primary tumor (or average primary

tumor growth rate) (correlation, r = 0.83, F test, p < 0.01) (Fig-

ure 5F), indicating at a single-gene level that mutant cells with

a stronger ability to promote primary tumor growth generate me-

tastases faster.

To analyze blood samples for the presence of circulating tu-

mor cells (CTCs), we designed a microfluidic device based on

the physical size of the Cas9-GFP KPD cells (Figures S6B and

S6C). We performed CTC capture with terminal blood samples

from mice injected with Cas9-GFP KPD cells transduced with

sgRNAs targeting Nf2, Pten, Trim72, Cdkn2a, and miR-152

and from mice injected with Cas9-GFP KPD control cells (un-

transduced or non-targeting sgRNA) (Figures S6C and S6D).

Mice transplanted with cells transduced with sgRNAs targeting

Nf2, Pten, Trim72, or Cdkn2a had a higher concentration of

CTCs as compared to controls (Figures S6D–S6G), consistent

with the higher rate of lung metastasis formation.

Competitive Dynamics of Top Hits Assessed Using
an sgRNA Minipool
To better understand the relative metastatic potential of multiple

genes from our genome-wide screen, we designed a targeted

pooled screen with a smaller library. This small library (termed

validation minipool) contains 524 sgRNAs targeting 53 genes

that had highly enriched sgRNAs in lung metastases in the

genome-wide screen (ten sgRNAs per gene for most genes)

plus 100 non-targeting sgRNAs.We also created a size-matched

library containing 624 non-targeting sgRNAs (termed control
minipool) (Figure 6A). Lentiviruses from these two pools were

used to transduce the Cas9-GFP KPD cells, which were cultured

in vitro for 1 week and then transplanted into Nu/Nu mice (Fig-

ure 6A). Both validation minipool- and control minipool-trans-

duced cells induced primary tumor growth at a similar rate

(Figure 6B). However, mice transplanted with validation minipool

cells had a dramatically elevated rate of lung metastasis forma-

tion (Figure 6C).

We sequenced the validation minipool plasmid library and the

transduced cells pre-transplantation, as well as the late-stage

primary tumors and whole lungs of the mice at 5 weeks post-

transplantation (see Data S2 in Dataset S1). The sgRNA repre-

sentations correlate strongly between technical replicates of

the transduced cell pool, late primary tumors, and lung metasta-

ses (Figures S7A and S7D). The sgRNA representation in the cell

sample strongly correlatedwith the plasmid (correlation, r = 0.91)

(Figures S7B and S7D). Almost all (99.4%) sgRNAs were recov-

ered in the plasmid and the cell population (Figure S7C). The

late primary tumors retained less than half of the sgRNAs, and

the metastases in the whole lung retained only a small fraction

(2%–7%) of all sgRNAs (Figure S7C). Enriched sgRNAs from

lung metastases clustered with each other and with late primary

tumors (Figure S7D). Similar to the genome-wide library, in this

validationminipool, the plasmid and cell samples had a unimodal

distribution of sgRNAs, whereas the late primary tumors and lung

metastases contained a bimodal distribution, with the majority of

sgRNAs being absent and a small fraction spanning a large range

of non-zero read counts (Figure 6D). Intriguingly, two mice re-

tained relatively high sgRNA diversity in late primary tumors (Fig-

ure 6D), likely due to dormant or slowly proliferating cells that

remained in low numbers during tumor growth. Similar to the

genome-wide library, large shifts in the sgRNA distribution exist

between different sample types (KS test, p < 10�15 for pairwise

comparisons between the cell, primary tumor, and lung metasta-

ses, p = 0.02 between plasmid and cell) (Figure 6E).

In the validation minipool, the sgRNAs detected in the late

primary tumors or the lungs of five different mice significantly

overlap with each other (Figures S7E and S7F). The late primary

tumors and lung metastases are dominated by a few sgRNAs

(Figures 7A and S7G–S7I), suggesting that these sgRNAs

outcompete others during tumor growth and metastasis. With

the validation library, the sgRNA representations are highly

correlated between late primary tumors and lung metastases

(correlation, r = 0.55 on average, F test, p < 0.01, n = 5) (Fig-

ure 7B). The late primary tumors and lung metastases have

dozens of sgRNAs at moderate to high frequencies (Figures 7B

and 7C). Several genes have multiple independent sgRNAs

that are enriched in the lung over the primary tumor (MPR > 1),

such as Nf2 (eight sgRNAs), Pten (four sgRNAs), Trim72 (three

sgRNAs), Ube2g2 (three sgRNAs), Ptges2 (two sgRNAs), and

ATP-dependent DNA ligase IV (Lig4) (two sgRNAs) (Figures 7C

and 7D). Two Cdkn2a sgRNAs were present in both late primary

tumors and lungmetastases in twomice, but withMPR< 1. Fga-,

Cryba4-, miR-152-, and miR-345-targeting sgRNAs were not

found at high frequency in either late primary tumors or lung

metastases, suggesting that they are outcompeted by other

loss-of-function mutations (such as Nf2), which agrees with the

relatively reduced metastasis formation of these genes in the
Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc. 9
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Figure 6. Tumor Evolution and Library Representation in Transplanted Cas9-GFP KPD Cells with Minipool Libraries

(A) Schematic representation of the loss-of-function metastasis minipool screen. Briefly, Cas9-GFP KPD cells were transduced with either validation minipool

(524 gene-targeting + 100 non-targeting sgRNAs) or control minipool (624 non-targeting sgRNAs). After puromycin selection, the cell pools were transplanted into

Nu/Nu mice. After 5 weeks, validation minipool sgRNAs were sequenced from primary tumor and lung samples.

(B) Primary tumor growth curve of Nu/Numice transplanted with Cas9 vector + validation minipool cells (n = 5 mice) or Cas9 + control minipool cells (n = 5 mice).

Error bars indicate SEM.

(C) Percent of lung lobes with metastases after 6 weeks for the mice in (B). C, control minipool; V, validation minipool. Error bars indicate SEM.

(D) Boxplot of the sgRNA normalized read counts for the plasmid library, cells before transplantation, primary tumors, and lung metastases using the validation

minipool.

(E) Cumulative probability distribution of library sgRNAs in the validation plasmid pool, cells before transplantation, primary tumors, and lung metastases.

Distributions of primary tumor and lung metastases are averaged across five mice.

See also Figure S7.
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individual sgRNA validation. These results further validate

several of the top hits from the primary screen, using either

sgRNA dominance (e.g., Nf2, Pten, Trim72) or MPR (e.g., Nf2,

Trim72, Ube2g2, Ptges2). This validation minipool reveals the

dynamics of multiple competing mutants chosen from the pri-

mary screen hits and indicates that mutants with strong pro-

growth effects tend to enhance metastasis (Figure 7E).

TCGA Gene Expression of Screen Hits in Human
Lung Cancer
To assess the relevance of our mGeCKOa and validation mini-

pool screen hits (genes targeted by sgRNAs enriched in lung

metastases) to pathological metastasis in human cancer, we

performed gene expression analysis of the human orthologs

of these genes. We compared mRNA levels in metastatic

compared to non-metastatic primary tumors in patient samples

using TCGAmRNA sequencing data. We found that most (61%–

75%) of these genes are downregulated in metastatic tumors in
10 Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc.
NSCLC patients (Figures S5D and S5E; Table S6). These data

suggest that downregulation of these genes is selected for in

metastatic tumors from patients.

DISCUSSION

Pooled Mutagenesis in a Metastasis Model
Distal metastases develop as primary tumors shed CTCs into the

circulation, from which CTCs travel to the destination site, move

out of the blood or lymphatic vessels, and initiate clonal growth

(Valastyan and Weinberg, 2011; Vanharanta and Massagué,

2013; Weinberg, 2007). In this study, cancer cells transplanted

into the flanks of mice form primary tumors in situ, and cells

from this mass undergo the intravasation-circulation-extravasa-

tion-clonal growth cascade to form distal metastases (Francia

et al., 2011). The initial lung cancer cell line has little capacity to

form metastases; in contrast, after being mutagenized with the

mGeCKOa genome-scale Cas9 knockout library, the cell
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population formshighlymetastatic tumors. Thus, thesemutations,

acting in simple or complex pleiotropic ways, accelerate metas-

tasis. In this model, the effect of mutations onmetastasis strongly

correlates with their abundance in late-stage primary tumors.

sgRNA Dynamics during Tumor Evolution
The dynamics of the sgRNA population changed dramatically

over the course of tumor development andmetastasis, reflecting

the selection and bottlenecks of cellular evolution in vitro and

in vivo. After a week in culture, cells retained most of the sgRNAs

present in the plasmid library, with decreases in sgRNAs target-

ing genes involved in fundamental cellular processes. The distri-

bution of non-targeting control sgRNAs is almost identical to

those targeting genes, suggesting that the selective pressure

of in vitro culture alone does not radically alter sgRNA represen-

tation, similar to previous observations in humanmelanoma cells

(Shalem et al., 2014).

In contrast, less than half of the sgRNAs survive in an early-

stage primary tumor. This loss of representation occurs with

both gene-targeting sgRNAs and non-targeting control sgRNAs,

suggesting that random sampling influences sgRNA dynamics

during the transplantation and tumor initiation processes,

although we cannot exclude that some of the non-targeting

sgRNAs might have detrimental or pro-growth effects. We also

detected further dropout of genes involved in fundamental

cellular processes in early tumor samples compared to cell sam-

ples. Thus, it is likely that the sgRNA dynamics are influenced by

a combination of selection and random sampling during trans-

plantation and tumor initiation.

As primary tumors grow, the mutant cells proliferate and

compete as a pool. This creates strong selection for sgRNAs tar-

geting anti-apoptotic genes and other tumor suppressors. The

majority of the genetic diversity in early tumors is lost during the

subsequent 4 weeks of primary tumor growth in mice. Accord-

ingly, sequencing revealed a smaller set of dominant sgRNAs,

usually on the order of hundreds to a few thousand per mouse.

In addition, almost all of non-targeting sgRNAs are lost during pri-

mary tumorgrowth,which isconsistentwith selection for cellswith

special growth and survival properties. This observation is also

consistent with earlier transplantation studies by Kerbel and col-

leagues using small pools of randomly mutagenized cells, which

found that the majority of clonal variants detectable by Southern

blot disappearedwithin 6 weeks of primary tumor growth, leaving

one dominant clone (Korczak et al., 1988; Waghorne et al., 1988).

Each step toward metastasis has a bottleneck effect. In the

lung metastases, we detected very few sgRNAs at high abun-

dance. As with the primary tumor, we found only a few non-tar-

geting sgRNAs at low frequencies in metastases. Their presence

could be due to unknown off-target effects of these sgRNAs,

random shedding of CTCs in the primary tumor, or clustering

together with other strongly selected CTCs during metastasis

(Aceto et al., 2014).

Relevance of Screen Hits to Human Cancer
Several of the genes enriched in late-stage primary tumors are

associated with cancer, but their functions in tumor growth are

poorly understood. For example, Mgmt, a gene with two en-

riched sgRNAs, is required for DNA repair and is thus crucial
for genome stability (Tano et al., 1990). Mutation, silencing, or

promoter methylation of MGMT is associated with primary glio-

blastomas (Jesien-Lewandowicz et al., 2009). Med16, another

gene with two enriched sgRNAs, encodes a subunit of the medi-

ator complex of transcription regulation, which has been recently

implicated in cancer (Huang et al., 2012; Schiano et al., 2014).

We found that the genes that are significantly enriched in lung

metastases largely overlap with those found in abundance in the

late primary tumor. Several of these hitswere validated in vivo us-

ing multiple individual sgRNAs, including Nf2, Pten, Cdkn2a,

Trim72, Fga, miR-152, and miR-345. Nf2, Pten, and Cdkn2a are

well-known tumor suppressor genes. Intriguingly, the NF2 locus

is mutated at only 1% frequency in primary tumors of human

NSCLC patients (LUAD and/or LUSC) (Cancer Genome Atlas

Research Network, 2012, 2014). Nf2 mutant mice develop a

range of highly metastatic tumors (McClatchey et al., 1998). It

is possible that NF2mutations influence metastases to a greater

degree than primary tumor growth, but this awaitsmetastasis ge-

nomics from patient samples. Pten mutations are also associ-

ated with advanced stages of tumor progression in a mouse

model of lung cancer (McFadden et al., 2014), and PTEN was

found to be mutated at 8% in adenocarcinoma patients

(LUAD). CDKN2A has been shown to be often inactivated in

lung cancer (Kaczmarczyk et al., 2012; Yokota et al., 2003).

Fga encodes fibrinogen, an extracellular matrix protein involved

in blood clot formation. Fgamutations have been found in various

cancer types in TCGA (Lawrence et al. 2013), as well as circu-

lating tumor cells (Lohr et al., 2014). Trim72 is an E3 ubiquitin

ligase, and its role in cancer metastasis is largely unknown.

Studies have shown that miR-152 and miR-345 are associated

with cancer and metastasis (Cheng et al., 2014; Tang et al.,

2011). FGF2 and BAG3, which promote metastasis, were pre-

dicted targets ofmiR-152 andmiR-345; thus, loss of thesemicro-

RNAs may lead to acceleration of metastases, likely due to de-

repression of these genes (Cheng et al., 2014; Tang et al., 2011).

In our ownanalysis of TCGAsamples from lungcancer patients,

we observed downregulation of the human orthologs of the genes

identified in the genome-wide and validation minipool screens at

themRNA level inmetastatic tumors compared to non-metastatic

tumors, suggesting that these genesmay also be inactivated dur-

ing pathological metastasis. Human orthologs of these genes are

often found to be mutated in cancers. Moreover, these genes

have been implicated in various pathways and biological pro-

cesses in tumorigenesis and/or metastasis in human cancer (Ta-

bles S7A–S7C). However, most cancer sequencing studies

involve samples fromprimary tumors of patients. In the clinic, me-

tastases are rarely sampled. Future patient sequencing directly

from metastases may further connect genes identified in the

mousemodel to those mutated or silenced in clinical metastases.

Future In Vivo Functional Genomic Screens
Our study provides a roadmap for in vivo Cas9 screens, and

future studies can take advantage of this model to explore other

oncogenotypes, delivery methods, or metastasis target organs.

Genome-scale CRISPR screening is feasible using a transplant

model with virtually any cell line or genetic background (e.g., mu-

tations in EGFR, KRAS, ALK, etc.), including a large repertoire of

human cell lines from diverse cancer types (Barretina et al.,
Cell 160, 1–15, March 12, 2015 ª2015 Elsevier Inc. 11



Figure 7. Enriched sgRNAs from the Validation Minipool Screen in Primary Tumors and Lung Metastases

(A) Pie charts of the most abundant sgRNAs in the primary tumor and the whole lung of two representative mice transplanted with validation minipool-transduced

Cas9-GFP KPD cells. The area for each sgRNA corresponds to the fraction of total reads from the tissue (primary tumor or lung metastases) for the sgRNA.

All sgRNAs with R2% of total reads are plotted individually.

(legend continued on next page)
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2012). Other cell delivery methods, such as intravenous injection

or orthotopic transplantation, may help identify genes regulating

extravasation and clonalization. Examining samples from other

stages or sites, such as CTCs or metastases to other organs,

can provide a more refined picture of tumor evolution.

In addition to these parameters, several aspects of the screen

perturbations themselves can also be modified. Targeted drug

therapies or immunotherapies can be applied in conjunction

with the in vivo screening strategy to identify genes involved in

acquired resistance. Other screening technologies, such as

Cas9-mediated activation (Gilbert et al., 2014; Konermann

et al., 2015), can identify metastasis-regulating factors that act

in a gain-of-function manner. Activation screens that identify on-

cogenes, as well as dropout screens that identify genetic depen-

dencies, may facilitate identification of novel therapeutic targets.

Targeted subpool strategies can be used to reduce the library

size and facilitate further confirmation of primary screens. In a

customized library, genes can be chosen based on genomic

analysis, pathways, or clinical relevance for focused screening li-

braries. Additionally, application of pooled sgRNA libraries using

individually barcoded cells will allow quantitative assessment of

the robustness and significance of each candidate hit and will

enable analysis of the competitive dynamics among different

perturbations. With these promising future directions and the re-

sults of our study, Cas9-based in vivo screening establishes a

new platform for functional genomics discovery.

EXPERIMENTAL PROCEDURES

Generation of Cas9-GFP Expression Vector

A lentiviral vector, lenti-Cas9-NLS-FLAG-2A-EGFP (lentiCas9-EGFP), was

generated by subcloning Cas9 into a lentiviral vector.

Pooled Guide-Only Library Cloning and Viral Production

The Cas9-GFP KPD cell line was transduced at a MOI of �0.4 with lentivirus

produced from a genome-wide lentiviral mouse CRISPR knockout guide-

only library (Sanjana et al., 2014) containing 67,405 sgRNAs (mGeCKOa,

Addgene 1000000053) with at least 400-fold representation (cells per

construct) in each infection replicate. A detailed viral production and infection

protocol can be found in Extended Experimental Procedures.

Animal Work Statement

All animal work was performed under the guidelines of the MIT Division of

Comparative Medicine, with protocols (0411-040-14, 0414-024-17, 0911-

098-11, 0911-098-14, and 0914-091-17) approved by the MIT Committee

for Animal Care, and were consistent with the Guide for the Care and Use of

Laboratory Animals, National Research Council, 1996 (institutional animal wel-

fare assurance no. A-3125-01).
(B) Scatterplot of normalized sgRNA read counts in primary tumor and lung meta

dots indicate sgRNAs from different mice). log2 n.r., log2 normalized reads.

(C) log2 ratio of sgRNA abundance in the lung metastases over the primary tumo

sgRNA). Green dots are the 100 control sgRNAs. Dots with black outlines are n

sgRNAs for which more than one sgRNA targeting the same gene/miR is enrich

labeled with the gene/miR targeted. The lung-primary ratio is calculated for indiv

(D) Number of genes with 0 to 10 significantly enriched validation minipool sgRNA

miRs are categorized by how many sgRNAs targeting that gene/miRs are enrich

(E) Schematic illustration of tumor growth andmetastasis in the library-transduced

in the subcutaneously transplanted pool is selected over time for mutations that p

lung metastases.

See also Figure S7.
Mice, Tumor Transplant, and Metastasis Analysis in the Primary

Screen

Untransduced or mGeCKOa-transduced Cas9-GFP KPD cells were injected

subcutaneously into the right side flank of Nu/Nu mice at 3 3 107 cells per

mouse. Transplanted primary tumor sizes were measured by caliper. At

6 weeks post-transplantation, mice were sacrificed and several organs (liver,

lung, kidney, and spleen) were dissected for examination of metastases under

a fluorescence stereoscope.

Mouse Tissue Collection

Primary tumors and other organs were dissected manually. For molecular

biology, tissueswere flash frozenwith liquidnitrogen andground in24-well poly-

ethylene vials with metal beads in a GenoGrinder machine (OPS Diagnostics).

Homogenized tissues were used for DNA/RNA/protein extractions using stan-

dard molecular biology protocols. Tissues for histology were then fixed in 4%

formaldehyde or 10% formalin overnight, embedded in paraffin, and sectioned

at6mmwithamicrotomeasdescribedpreviously (Chenet al., 2014). Sliceswere

subjected to H&E staining as described previously (Chen et al., 2014).

Genomic DNA Extraction from Cells and Mouse Tissues

Genomic DNA from cells and tissues (primary tumors and lungs) was ex-

tracted using a homemade modified salt precipitation method similar to

the Puregene (QIAGEN/Gentra) procedure. The sgRNA cassette was ampli-

fied and prepared for Illumina sequencing as described previously (Shalem

et al., 2014). A detailed readout protocol can be found in Extended Experi-

mental Procedures.

Individual Gene and MicroRNA Validation

Six sgRNAs per protein-coding gene and four sgRNAs per microRNA gene

were chosen for validation using individual sgRNAs (Table S4). For protein-

coding genes, we cloned both the three sgRNAs from the mGeCKOa library

and three additional sgRNAs to target each gene. For microRNAs, we used

all four sgRNAs from the mGeCKOa library.

Validation and Control Minipool Synthesis and In Vivo

Transplantation

Validation and control minipools (Table S5) were synthesized using

array oligonucleotide synthesis (CustomArray) and transduced at

>1,000-fold representation in Cas9-GFP KPD cells. After 7 days in

culture, Cas9-GFP KPD cells transduced with the validation minipool or con-

trol minipool were injected subcutaneously into the right side flank of Nu/Nu

mice at 3 3 107 cells per mouse with five replicate mice. After 5 weeks, mice

were sacrificed, and primary tumors and lungs were dissected.
ACCESSION NUMBERS

Genomic sequencing data have been deposited in the NCBI Sequence Read

Archive under accession number PRJNA273894. Plasmids and pooled
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on-control sgRNAs that target genes or miRs. Red dots indicate non-control
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NSCLC transplant model. The initially diverse set of loss-of-functionmutations

romote growth of the primary tumor. A subset of these mutants also dominate
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